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Abstract. We introduce a solvable quantum antiferromagnetic model. The model, with Ising spins in a
transverse field, has infinite range antiferromagnetic interactions and random fields on each site following
an arbitrary distribution. As is well-known, frustration in the random field Ising model gives rise to a many
valley structure in the spin-configuration space. In addition, the antiferromagnetism also induces a regular
frustration even for the ground state. In this paper, we investigate analytically the critical phenomena in
the model, having both randomness and frustration and we report some analytical results for it.

PACS. 75.50.L Spin glasses and other random magnets – 05.30.-d Quantum statistical mechanics – 02.50.-r
Probability theory, stochastic processes, and statistics

1 Introduction

With the realization in the mid last century that the Néel
state cannot be the ground state (not even an eigenstate)
of a quantum Heisenberg antiferromagnet, considerable ef-
fort has gone in search of, and in understanding the nature
of, the ground state of such and similar quantum antifer-
romagnet [1]. Since early 1960s, quantum spin systems
described by Ising model in a transverse tunneling field
was investigated extensively; particularly because of easy
mapping of the quantum system to its equivalent classi-
cal system and some cases of exact solubility [2]. However
there have, so far, been very few soluble models with anti-
ferromagnetic interactions. It is well-known that the Ising
model with long range interactions is solved exactly, even
if the system has some special kind of quenched disorder,
like in Sherrington-Kirkpatrick model of spin glasses. The
number of degenerate states there can be estimated to be
O(2N/2), which is larger than that of the above mentioned
model (O(20.28743N )). However, it is not so easy to con-
sider the antiferromagnetic version of the model due to
a lack of sub-lattice to capture the Néel ordering at low
temperatures. In this paper, we introduce and study a
solvable quantum antiferromagnetic model. In our model
system each spin is influenced by the infinite range an-
tiferromagnetic interactions in a transverse field. We also
consider the case under the Gaussian or the binary random
fields. By introducing two sub-groups of the spin system,
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we describe the system by means of the effective single
spin Hamiltonian which is derived by the Trotter decom-
position [3] and Hubberd-Stratonovich transformation [4],
and we solve the model analytically. A preliminary study,
for the case without random fields, was reported earlier [5].

This paper is organized as follows. In the next section,
we introduce our model system and write down the general
formula of the averaged free energy density. In Section 3,
to check the validity of our analysis, we compare our re-
sult with the previous well-known result which was ob-
tained by mean-field approximations [6]. In Section 4, we
consider the system under the Gaussian and the binary
random fields on site and derive the equations of states
and evaluate them. We then obtain the phase diagrams.
Section 5 gives a summary.

2 The model system and its analysis

In order to capture the Néel ordering below the criti-
cal temperature TN or the amplitude of transverse field
ΓN , we divide spins S into the sub group A: S(A) =
(Sx,z,(A)

1 , S
x,z,(A)
2 , · · · , S

x,z,(A)
N ) and the sub group B:

S(B) = (Sx,z,(B)
1 , S

x,z,(B)
2 , · · · , S

x,z,(B)
N ), which are corre-

sponding to virtual sub-lattice A and B. Then the system
is described by the following effective Hamiltonian
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where S
z,(A,B)
i , S

x,(A,B)
i are x and z components of the

Pauli matrix:

S
x,(A,B)
i =

(
0 1
1 0

)
, S

z,(A,B)
i =

(
1 0
0 −1

)
, (2)

and h = (h1, h2, · · · , hN ) is a vector of the random fields
on site and h means the strength of the random field. ΓA

and ΓB are amplitudes of the transverse fields in the sub
groups A and B. The main advantage of this Hamiltonian
is that it can be recast exactly to that of a single spin in
an effective field.

Using the Suzuki-Trotter formalism [3] one can express
the quenched-variable h-dependent partition function as

Z(h) = lim
M→∞

trSA,SB
e−βH(h), (3)

with
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(4)

where γA,B = 1
2 log coth

(
βΓA,B

M

)
. By using the Hubberd-

Stratonovich transformation [4], the field h-dependent
partition function is written by means of the saddle point
technique, in the limit N → ∞, as

Z (h) = trSA,SB
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where Hi(hi) is the effective single spin Hamiltonian and
is given by

Hi (hi) = − J
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Here we should keep in mind that the integrals with re-
spect to mk

+ and mk
− are evaluated at the saddle points in

the limit of N → ∞, namely
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+ = − 1
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, (8)

where mk
+ and mk− are related to the magnetizations of

z-component for group A and B, namely Mk,z
A and Mk,z

B .
Thus the free energy F (h) = −β−1 log Z(h) of the system
is now written by

F (h) = −NJ

2M

∑

k
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mk
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)2
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exp [−βHi (hi)] . (9)

Taking into account the symmetry of the system, mk
+ =

m+, mk− = m− for all k, i.e., the so-called static approxi-
mation holds good naturally; the fluctuations due to, say,
two-spin correlations (including entanglements) vanishes
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in thermodynamic limit. Thus the h-dependent free en-
ergy leads to

F (h) = −NJ

2
(Mz

A + Mz
B)2 +

NJ

2
(Mz
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B)2

− β−1 log
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i Z(B)
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with
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x,(A,B)
i ,

(11)
where we used the relations (7) and (8): m+ + m− =
−2Mz

B, m+ − m− = −2Mz
A. It should be noted that the

above free energy still depends on the fields h. To ob-
tain the h-independent averaged free energy F , we should
evaluate the following quantity

F =
∫ ∞

−∞
P (h)F (h)dh, (12)

where P (h) = P (h1, · · · , hN ) is a joint distribution of
the random fields and we defined dh = dh1 · · · dhN . If we
assume that the random field hi for each site i is uncorre-
lated (not influenced by other hj

′s; j �= i) then

P (h) = P (h1, · · · , hN ) = P (h1) · · ·P (hN ) =
∏

i

P (hi),

(13)
there in the average in (12), giving the free energy (per
spin)

f =
∑
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l Mz
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(14)

Here we used the fact that the 2 × 2 matrix H (with
the elements (H)11 = −(H)22 = a, (H)12 = (H)21 = b
appearing in the of exponent of Eq. (11)) has eigen values
±√

a2 + b2. We also should keep in mind that in the sum
with respect to l, A+1 = B, B+1 = A; hence |A−B| = 1 is
satisfied. Hereafter, we use this relation for the sum with
respect to the label l. The magnetizations for two sub-
lattices Mz

A and Mz
B now obey the following saddle point

equations
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where it should be noted that A − B = 1 and the ap-
propriate expression for magnetization of each sub-lattice
can be derived by equating ∂f/∂Mz

B and ∂f/∂Mz
A to zero

respectively.

3 Analysis under uniform field

We first consider the case of uniform field [5], i.e.,
in (14) or (15), ĥ → 1. In this limit, by using the fact∫ ∞
−∞ dĥP (ĥ) = 1, the free energy density f reads

f =
∑

l=A,B

fU
l ; fU

l = −JMz
l Mz

l+1

− β−1 log 2 coshβ
√

(2JMz
l − h)2 + Γ 2
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and the saddle point equations with respect to Mz
A and
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B are obtained as follows.
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√
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√

(−2JMz
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l , (l = A, B). (17)

Before we investigate the quantum effects, we check the
classical case, that is ΓA = ΓB = 0. Then, the above
saddle point equations are reduced to

Mz
l = tanhβ(−2JMz

l+1 + h), (l = A, B). (18)

In order to determine the Néel temperature, we expand
the equations around MA, MB � 0 for h = 0 and ob-
tain Mz

A � −2JβMz
B, Mz

B � −2JβMz
A. From these lin-

earized equations, we find that only possible solution for
the case of Mz

A = Mz
B = Mz is Mz = 0; whereas

with Néel ordering a finite value of Mz can be obtain:
Mz

A = −Mz
B = −Mz. This gives the Néel temperature

TN = β−1
N = 2J . The linear susceptibilities χA and χB

are then evaluated as

χl = lim
h→∞

∂Mz
l

∂h
=

β(1 − 2Jχl+1)
cosh2 β(−2JMz

l+1)
, (l = A, B). (19)

The behavior beyond the Néel temperature T > TN is
determined by the condition Mz

A � 0, Mz
B � 0, i.e., χA =

β(1 − 2JχB) and χB = β(1 − 2JχA). This leads to

χ =
2

T + TN
(20)

where we defined χ = χA + χB. Therefore, in the limit
of T → TN = J , the linear susceptibility χ converges to
χ → 1/2J . On the other hand, below the Néel temperature
T < TN , we find the solution for the Néel ordering: Mz

A =
−Mz

B = −Mz �= 0 for h = 0. This condition should be
satisfied for (cf. Eq. (31))

χ =
2β

2βJ + cosh2 β(2JMz)
(21)

and at the critical point T = TN , M = 0, the susceptibility
takes χ = 2/(2J + TN) = 1/2J . In Figure 1 (left) we
plot the shape of the susceptibility χ as a function of T .
From this figure we find that the susceptibility has a cusp,
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Fig. 1. The longitudinal magnetization Mz as a function of T and Γ for uniform systems (the left panel). The critical points
of the second order phase transition are given by TN = ΓN = 1/2J . The right panel shows the corresponding susceptibility χ
as a function of T and Γ .

instead of the divergence as observed in the ferromagnetic
systems, at the critical temperature T = TN , as observed
in the analysis for finite range models by using mean-field
approximations [6]. As mentioned earlier, this model being
recastable exactly to a (classical) single-spin in an effective
field (i.e., the mean-field approximation for the partition
function being exact), there is no scope of any non-trivial
wave-function with entangled neighbouring spins.

We next consider the quantum case ΓA, ΓB �= 0. For
simplicity, we consider the case of the symmetric trans-
verse field, namely, ΓA = ΓB = Γ . In order to consider
the pure quantum effects, we take the limit of β → ∞ and
deal with the following coupled equations

Mz
l =

−2JMz
l+1 + h

√
(−2JMz

l+1 + h)2 + Γ 2
, (l = A, B). (22)

It is important for us to bear in mind that for J > 0, the
above equations have a solution Mz = 0 if MA = MB

and a solution Mz �= 0 if MA = −MB, as expected.
To determine the critical transverse field, we expand the
above equations around Mz

A, Mz
B � 0 for h = 0 as

Mz
A � −2JMz

B/Γ and Mz
B � −2JMz

A/Γ . This gives
the critical point ΓN = 2J . The spontaneous sub-lattice
order Mz

A or Mz
B vanishes at the Néel phase bound-

ary TN(Γ ). Deep inside the antiferromagnetic phase (at
β → ∞, Γ → 0, h = 0), Mz

A = 1 = −Mz
B and the free

energy density f can be expressed as f = 1/β log[1 +
exp(−β∆(Γ ))], the specific heat ∂2f/∂T 2 will have a vari-
ation like exp[−β∆(Γ )] like that of a two level system with
a gap ∆(Γ ) =

√
4J2 + Γ 2 here. This is the exact magni-

tude of the gap in the magnon spectrum of this long range
transverse Ising antiferromagnet.

The susceptibilities are given by

χl = lim
h→0

∂Mz
l

∂h
=

Γ 2(1 − 2Jχl+1)
[(2JMz

l+1)2 + Γ 2]3/2
, (l = A, B).

(23)
Then, the behavior beyond the critical amplitude of
the transverse field ΓN is determined by the condition

Mz
A, Mz

B � 0, namely, χA = (1 − 2JχB)/Γ, χB = (1 −
2JχA)/Γ . This leads to

χ = χA + χB =
2

Γ + ΓN
. (24)

On the other hand, below the critical amplitude of the
transverse field ΓN , we set Mz

A = Mz
B = −Mz and obtain

χ =
2Γ 2

[(2JM)2 + Γ 2]3/2 + 2JΓ 2
. (25)

At the critical point ΓN (Mz = 0), the susceptibility is
given as χ = 2/(ΓN +2J) = 1/2J . Around Γ � 0, the sus-
ceptibility behaves as χ = 2Γ 2/(2J)3. In Figure 1 (right),
we plot χ as a function of Γ (and also T ). From this figure,
we find that the susceptibility has a cusp at the critical
amplitude of the tunneling field.

We next investigate the transverse component of the
susceptibility. The magnetization of the transverse di-
rection are calculated the derivative of the free energy
density with respect to the amplitudes of the transverse
field ΓA, ΓB.

Mx
l =

∂f

∂Γl
=

Γl√
(−2JMz

l+1 + h)2 + Γ 2
l

× tanhβ
√

(2JMz
l+1 + h)2 + Γ 2

l , (l = A, B). (26)

At the ground state, these coupled equations are simplified
as follows.

Mx
l =

Γl√
(−2JMz

l+1 + h)2 + Γ 2
l

, (l = A, B). (27)

In para-magnetic phase is specified by Mz
A = Mz

B =
0 and this gives Mx

A = Mx
B = 1. On the other

hand, antiferromagnetic phase for h = 0, we obtain
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Fig. 2. Longitudinal magnetization Mx and susceptibility χ⊥.

from (22) as Mz
A = −JMz

B/
√

(2JMz
B)2 + Γ 2

A, Mz
B =

−JMz
A/

√
(2JMz

A)2 + Γ 2
B. Hence,

Mx
l =

Γl

2J
, (l = A, B) (28)

for the antiferromagnetic case Mz
A = −Mz

B = −M . There-
fore, the susceptibilities of the transverse direction lead to

χ⊥ = χx
l =

∂Mx
l

∂Γl
= 0, (l = A, B) (29)

for ΓA, ΓB > ΓN and

χ⊥ = χx
A = χx

B =
1
J

(30)

for ΓA, ΓB < ΓN . We plot the transverse magnetization
Mx = Mx

A = Mx
B for Mz = Mz

A = Mz
B in Figure 2.

We next consider the quantum antiferromagnetic system
under random fields.

4 Analysis under random fields

In the previous section, we investigated the critical phe-
nomena for spatially uniform systems. It has been conjec-
tured that fluctuation in the random (longitudinal) field
Ising model (RFIM) gives rise to a many valley struc-
ture in the configuration space, similar to the case in spin
glasses. The study of the longitudinal random field trans-
verse field Ising model with ferromagnetic uniform inter-
actions has already been made [9]. There seems to be no
reported analytic research for the RFIM with antiferro-
magnetic interactions in transverse field. It should be in-
teresting to investigate the competition between two dif-
ferent kinds of frustration; frustration due to the quenched
disorder and the frustration induced by the antiferromag-
netic interactions. In this section, we investigate quantum
systems under random on-site longitudinal fields. In this

paper, we consider the following two cases of the random
field distributions:

Pg(h) =
N∏

i=1

1√
2πσ

exp
[
− 1

2σ2
(hi − h0)2

]

≡
N∏

i=1

Pg(hi) (31)

and

Pb(h) =
N∏

i=1

{θδ(hi − h0) + (1 − θ)δ(hi + h0)}

≡
N∏

i=1

Pb(hi), (32)

where the bias factor of the binary random field θ takes
0 < θ < 1. For these distributions, the free energy densi-
ties fg,b ≡ (1/N)

∫ ∞
−∞ dĥPg,b(ĥ)F (ĥ) become

fg =
∑
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fg
l (33)
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l+1M
z
l − β−1

×
∫ ∞

−∞
Dx log 2 coshβ

×
√
{−2JMz

l+1 + h(σx + h0)}2 + Γ 2
l , (34)

for the Gaussian random field Pg(h), where Dx ≡
1√
2π

e−x2/2dx and

fb =
∑

l=A,B

f b
l (35)

f b
l = −JMz

l+1M
z
l − β−1θ log 2 coshβ

×
√
{−2Mz

l+1J + hh0}2 + Γ 2
l

− β−1(1 − θ) log 2 coshβ
√
{2Mz

l+1J + hh0}2 + Γ 2
l ,

(36)

for the binary random field Pb(h). In following, we inves-
tigate the critical phenomena given by these free energy
densities for these two cases.

4.1 The Gaussian random field

For the Gaussian random field (31) the saddle point equa-
tions are given by the derivative of the free energy density
fG with respect to Mz

A and Mz
B. Then we have

Mz
l =

∫ ∞

−∞
Dx

{−2JMz
l+1 + h(σx + h0)}√

{−2JMz
l+1 + h(σx + h0)}2 + Γ 2

l

× tanhβ
√
{−2JMz

l+1 + h(σx + h0)}2 + Γ 2
l (37)
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Fig. 3. The right panel shows phase boundaries between antiferromagnetic and paramagnetic phases for classical and quantum
systems for (J, h, h0) = (1, 1, 1). The left panel shows the variation of longitudinal and transverse magnetizations Mz and Mx

with Γ .

for l = A, B. At the ground state (β → ∞) these equations
of states are simplified as follows

Mz
l =

∫ ∞

−∞
Dx

{−2JMz
l+1 + h(σx + h0)}√

{−2JMz
l+1 + h(σx + h0)}2 + Γ 2

l

, (l = A, B).

(38)

For the possible choice Mz
A = Mz = −Mz

B to detect the
Néel ordering, we solve the above equations for the sym-
metric transverse fields ΓA = ΓB = Γ numerically. In Fig-
ure 3 (left), we plot the case of the center of the Gaussian,
h0 takes h0 = 0 and the deviation of the Gaussian σ = 0.5
and 1.5. From this figure, we find that the system under-
goes second-order phase transition at the critical ampli-
tude of the transverse field from the behavior of Mz. If
the phase transition is first order for the case of the center
h0 of the Gaussian (31) is zero, we can expand the saddle
point equation with respect to Mz

A under the condition
ΓA = ΓB = Γ and Mz

B = −Mz
A = −Mz as

Mz = C1M
z − C3(Mz)3 + O((Mz)5) (39)

with

C1 = 2JΓ 2

∫ ∞

−∞

Dx

[(hσx)2 + Γ 2]3/2
,

C3 = 4J3Γ 2

∫ ∞

−∞
Dx

2(hσx)2 + Γ 2

[(hσx)2 + Γ 2]7/2
. (40)

The phase boundary Γ (σ) of the continuous transition
between the Néel and the paramagnetic phases is obtained
for a given set of the parameters (J, h0, h) by the condition
a = 1, namely

Γ =
(

2J

∫ ∞

−∞

Dx

[(hσx)2 + Γ 2]3/2

)−1/2

. (41)

The second order phase transition is observed for C3 > 0,
whereas a first order phase transition is found for C3 < 0.
In Figure 3 (right), we plot the boundaries between the
Néel and the paramagnetic phases for both quantum and
classical systems. In this plot, we set (J, h, h0) = (1, 1, 0).
In the left panel of Figure 4, we plot the factor C3 of the
third order of the expansion of the magnetization Mz as
a function of σ. In this plot we substituted the solution of
the boundary (41) for a given σ into C3. From this panel
we find, that from the value C3 = 4(J/Γ )3 > 0 at σ = 0,
that C3 decreases and takes its positive minima at just
below the critical point σc, and beyond the critical point
C3 increases again. We therefore conclude that the phase
transition is always second order. We might see this from
the argument below. In the limit of Γ → 0, the equation
of state (38) for MB = −Mz

A = −Mz is simplified to

Mz =
∫ ∞

−∞
Dx sgn (2JMz + hσx) = 1 − 2H

(
2JMz

hσ

)
.

(42)
In Figure 4 (right panel), we plot the solution of (42)
for several values of h. We found that for σ → ∞,
H(2JMz/hσ) → 1/2 and Mz → 0, whereas, for σ → 0,
H(2JMz/hσ) → 0 and Mz → 1. By expanding (42) with
respect to Mz up to the first order, we obtain the critical
point σc as

σc =

√
2
π

(
2J

h

)
. (43)

The magnetization varies continuously near this criti-
cal point (of the second order phase transition): Mz =√

12σ/πσc(1 − σ/σc)1/2.

We next evaluate the x-component (the transverse
component) of the magnetizations Mx

A and Mx
B. These
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Fig. 4. The longitudinal magnetization Mz as a function of σ for several values of h0 for the case of Γ = 0 (right panel).
Each line of a solution of the equation (42). The left panel shows the σ-dependence of the factor C3 of the third order of the
magnetization near the critical point.

are calculated at the ground state β → ∞ as

Mx
l =

∂fG

∂Γl

=
∫ ∞

−∞

ΓlDx√
{−2JMz

l+1 + h(σx + h0)}2 + Γ 2
l

, (l = A, B)

(44)

In Figure 3 (left panel), we plot the results. It should be
noted that in the limit of Γ → ∞, Mx saturates Mx �∫ ∞
−∞ Dx(Γ/Γ ) = 1.

4.2 The binary random fields

For the binary random fields, we obtain the saddle point
equations by taking the derivative of the free energy den-
sity fB with respect to Mz

A and Mz
B as follows:

Mz
l = − θ(2JMz

l+1 − hh0)√
(2JMz

l+1 − hh0)2 + Γ 2
l

× tanhβ
√

(2JMz
l+1 − hh0)2 + Γ 2

l

− (1 − θ)(2JMz
l+1 + hh0)√

(2JMz
l+1 + hh0)2 + Γ 2

l

× tanhβ
√

(2JMz
l+1 + hh0)2 + Γ 2

l , (l = A, B).
(45)

At the ground state β → ∞, these equations are simpli-
fied to

Mz
l = − θ(2JMz

l+1 − hh0)√
(2JMz

l+1 − hh0)2 + Γ 2
l

− (1 − θ)(2JMz
l+1 + hh0)√

(2JMz
l+1 + hh0)2 + Γ 2

l

, (l = A, B). (46)

We solve the above equations numerically and plot it in
Figure 5 (left panel). From this figure, we find that the
system undergoes first order phase transition when the
value of h0 is larger than same critical point hc

0. Whereas,
for small value of h0 < hc

0, the phase transition is the
second order.

In following, we determine the tri-critical point
(hc

0, Γc). If the transition is continuous, we can expand
the saddle point equation for Mz

A under the condition
ΓA = ΓB = Γ and Mz

B = −Mz
A = −Mz as follows:

Mz = C̃0+C̃1M
z+C̃2(Mz)2+C̃3(Mz)3+O((Mz)4) (47)

where we defined

C̃0 =
2(θ − 1)hh0√
(hh0)2 + Γ 2

(48)

C̃1 =
2JΓ 2

{(hh0)2 + Γ 2}3/2
(49)

C̃2 = −2J2hh0(2θ − 1)
[

Γ 2 + 4(hh0)2

{(hh0)2 + Γ 2}5/2

]
(50)

C̃3 = 4J3

[
Γ 4 − 4Γ 2(hh0)2

{(hh0)2 + Γ 2}7/2

]
. (51)

Therefore, if the distribution (32) is symmetric (i.e., θ =
1/2), the factors C̃0 and C̃2 vanish and the magnetization
behaves as

Mz = C̃1M
z + C̃3(Mz)3 + O((Mz)5). (52)

From this expression, we find that a second order phase
transition is found when the condition C̃1 = 1 and C̃3 < 0
holds. On the other hand, a first order phase transition
is observed for C̃1 = 1 and C̃3 > 0. Therefore, the point
(hc

0, Γc) = ((J/h)(4/5)3/2, 2J(4/5)3/2), which is determine
by C̃1 = 1, C̃3 = 0, corresponds to a tri-critical point
on the phase boundary. In Figure 5 (right panel) we plot
these phase boundaries. We should notice that the critical
point Γc is independent of h. We find that for h0 > hc

0,
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Fig. 5. The longitudinal and the transverse magnetizations, Mz and Mx as a function of Γ for the case of the binary random
fields (right panel). The left panel shows phase boundaries between antiferromagnetic and paramagnetic phases. The dots
represent tri-critical points (hc

0, Γc) = ((1/h)(4/5)3/2 , 2(4/5)3/2) we set J = 1.

the transition from the symmetry breaking phase to sym-
metric phase is first order. To compare this result with the
case of the Gaussian random field, we consider the limit
Γ → 0 in (46). We obtain

Mz
l = θ sgn(2JMz

l+1 + hh0)
+ (1 − θ) sgn(2JMz

l+1 − hh0), (l = A, B). (53)

To detect the transition point between the Néel and para-
magnetic phases, we set Mz

l = Mz = −Mz
l+1 and θ = 1/2

for simplicity. We then have

2Mz = sgn(2JMz + hh0) + sgn(2JMz − hh0). (54)

Apparently, Mz takes values 1 or 0 and the critical point
of the first order phase transition is determined by 2J −
hh0 = 0, i.e., hc

0 = 2J/h. This point hc
0 is observed on the

crossing point on the h0-axis in Figure 5 (right panel). On
the other hand, as we saw in Figure 4 (left panel), the
magnetization Mz for the Gaussian random field drops
gradually and the phase transition is second order even
if there is no quantum fluctuation Γ = 0 at the ground
state (at β → ∞). This is a reason why the order-disorder
phase transition in the Gaussian random field Ising model
is always first order and it does not depend on Γ or σ.
Finally, we calculate the transverse magnetization Mx

A and
Mx

B. From the derivative of the free energy density fB with
respect to ΓA and ΓB, we obtain

Mx
l =

∂fb

∂Γl
=

θΓl√
{−2JMz

l+1 + hh0}2 + Γ 2
l+1

× tanhβ
√

{−2JMz
l+1 + hh0}2 + Γ 2

l

+
(1 − θ)Γl√

{2JMz
l+1 + hh0}2 + Γ 2

l

× tanhβ
√

{2JMz
l+1 + hh0}2 + Γ 2

l , (l = A, B).
(55)

At the ground state, these equations are simplified as

Mx
l =

θΓl√
{−2JMz

l+1 + hh0}2 + Γ 2
l

+
(1 − θ)Γl√

{2JMz
l+1 + hh0}2 + Γ 2

l

, (l = A, B). (56)

In Figure 5 (left panel) we plot the transverse magnetiza-
tion for case of the symmetric amplitude of the tunneling
field ΓA = ΓB = Γ as a function of Γ . Obviously, for large
Γ , we found Mx = 1 from (56).

As may be noted, in the case where the random
quenched fields are symmetrically distributed about its
zero value, the effective sub-lattice symmetry could be
utilized to reduce the whole problem to that of a ferro-
magnet.

5 Summary

In this paper, we proposed an analytically solvable quan-
tum antiferromagnetic Ising model. Because of Ising
anisotropy and long-range interactions, it has solvable
Néel-like ground and other state properties. In view of
the extensive recent studies in quantum antiferromag-
nets ([10–13]), particularly in quantum Ising antiferromag-
nets ([12,13]), this kind of analysis should be of consider-
able importance.

In the analysis of spatially uniform system, we found
the Néel order below the tunneling field ΓN and show that
the linear susceptibility has a cusp variation around that
critical ΓN . It may be mentioned that a similar behavior
in the half-filled Hubberd model was observed earlier [14].
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For this uniform spin system, the free energy den-
sity (16) gives the ground state energy in the zero tempera-
ture limit and it also gives the low temperature behavior of
the specific heat, the exponential variation of which gives
the precise gap magnitude ∆(=

√
4J2 + Γ 2) in the excita-

tion spectrum of the system. It may be noted that, because
of the restricted (Ising) symmetry and the infinite dimen-
sionality (long range interaction) involved, there need not
be any conflict with the Haldane conjecture. Although our
entire analysis has been for spin-1/2 (Ising) case, because
of the reduction of the effective Hamiltonian (6) to that of
a single spin in an effective vector field, the results can be
easily generalized for higher values of the spin S. No qual-
itative change is observed. The order-disorder transition
in the model can be driven both by thermal fluctuations
(increasing T ) or by the quantum fluctuations (increas-
ing Γ ). This transition in the model has been investigated
studying the behaviors of the (random sub-lattice) stag-
gered magnetization and the (longitudinal and transverse)
susceptibilities. No quantum phase transition, where the
gap ∆ vanishes, is observed in the model, unlike in the
one dimensional transverse Ising antiferromagnets.

By analysis of the disordered system as the random
field Ising model in a transverse field, we found that the
order of the phase transition changes at a tri-critical point.
These conditions are obtained analytically for both the
Gaussian random fields and the binary random fields.
We believe, analysis of such model systems might provide
some insights also for the quantum antiferromagnets with
short range interactions.
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